Schiffsführungs

Abb. 3: Handlungstermin- und Beginn der Handlungen bei Erscheinen der
handlungsregulierenden Information. Rot: tatsächlicher Verlauf; grau: wahrscheinlich
erfolgreicher Verlauf (08:25:40 oder 08:26:23) [starboard ten?]. Aufzeichnung

Der Voice-Recorder gibt die Lage wie folgt wieder [2]:
08:23:21 PILOT: port ten; ... 08:25:30 PILOT: midships; ... 08:25:41 PILOT: two five; two five zero; ... 08:25:50 PILOT: yeah, make it two four five all right.
Das Schiff dreht weiter nach BB. Der Lotse
wird unser und ordnet «midships». Er
wartet auf seine Hauptinformation und fängt
das Schiff bei einem Kurs von 245° ab.
Sein ursprüngliches Ziel, das Schiff mittels Racon-Signal «Ya»
durch die Mitte zu führen, ist also als mentales Modell verankert.
Er ist in dieser Situation nicht in der Lage, seinen Handlungsplan
tizulandern und entspricht damit theoretisch objektiv existierenden
menschenligen Eigenschaften.
Die Situation gleicht der Lage eines Autofahrers, der auf eine
geschlossene Schranke zufährt und darauf wartet, dass das Öff-
nungssignal erteilt wird. In der Schranke endlich und wie immer
rechtzeitig vor ihm öffnet. Doch das geschieht hier bis zur 26.
Minute nicht. Aber das Schiff wird nicht am Weiterfahren gehindert,
die Schiffseigenen Systeme reagieren nicht; eine Schutzfunktion ist
mehrsprichig nicht vorhanden, die menschliche Schwäche ist Systembeschränkung
und wird nicht erkannt (vgl. [1]; ... die eingeschränkte sensorische Instrumentierung des Prozesses und andere begrenzte
machinelle Funktionen bzw die physischen und psychischen Grenzen
menschlicher Operatoren nicht angemessen berücksichtigt."
Natürlich hatte noch andere Informationsquellen einsetzen
dienen, die dem ausdrücklich ausdrücklichen Fehler sichtbar ge-
nügten hätten. Die später vorgestellte Problemlösung «Assistent-
system» führt genau diese Funktion aus und verhindert so
objektiv vorhandene Systemschwäche von Mensch und Maschine
auf der «Cosco Busan».

Endlich erscheint das erwarte Signal: das «Tor» öffnet sich
(Abb. 3; 08:26:14 Uhr). Diese Information reguliert sein Handeln.
Der PILOT freut sich. Die Theorie wird bestätigt: «... daß bei einer
automatisierten Strategie zugunsten einer Relevanz der kogni-
tiven Aufwands die Situation und alternative Vorgehensweisen nur
obligatorisch oder gar nicht analysiert werden [...].»[5]. Also macht
der Lotse das, was er immer gemacht hat: auf die «Mitte zuhalten».
Der Voice-Recorder gibt den Ablauf wieder [2]:
08:26:23 PILOT: starboard ten; ... 08:26:32 PILOT: starboard
twenty; ... 08:26:54 PILOT: fall ahead.
Das Schiff dreht zügig an. Zu einer kritischen Prüfung von Hand-
lungsziel und Handlungsleitungen ist der Lotse in dieser Hand-
lungshochphase nicht mehr fähig. Hohe Komplexität und Dynamik
des Prozesses schließen derartige veränderte Überlegungen aus. Er
erkennt nicht mehr, dass die Drehung des Schiffes nach Steuerbord
wahrscheinlich in einer Phase der Handlungsterminen (wahrscheinlich
sichere Werte auf das Racon-Signal) um ca. 40-60 s oder etwa eine
Schiffsseite bis 25° eingeleitet wurde (vgl. Abb. 4). Erschwerend
kommt in dieser Phase der Bestätigung seines Handlungsplans ca.
30° nach «Tor» bereits eine hochwirksame Schreibein. Ableitung
der durch eine Anfrage der VTS-Zentrale [2] hinzu:
08:27:24 PILOT: wait remote traffic; 08:27:29 PILOT: traffic
remote; 08:27:37 PILOT: close to ten; 08:27:45 PILOT: VHF: traffic
remote did you call? 08:27:48 PILOT: wait remote traffic this is AS;
shows you on their three five heading what are your intentions.
over? 08:27:57 PILOT: VHF: wait I was around him steering
two eight right now; 08:28:03 PILOT: starboard twenty.
Mit «wait to ten» verweist er die so notwendige aber zu spät ein-
gleitete Drehung des Schiffes nach Steuerbord. Die Versuche, die
Mitte der Durchführung im ECO zu finden und den Kapitän zu befa-
gen sowie die Verwirrungen, die durch weitere, nicht deklarierte
Signale ausgelöst werden, weiteten auf den Verlust der Handlungs-
kompetenz des Lotsen hin.

Gefahren wachen nicht linear und kontinuierlich, sondern dy-
namisch, sprunghaft, exponentiell und zufällig. Man kann viele
Ursachen für das Versagen von Lotse und Kapitän der «Cosco Bus-
an» finden und viele werden zu Recht genannt. Es gibt die Praxis
und den Hersteller lediglich wenig, wenn die Zusammenhänge
von menschlichen Eigenschaften und technischen Systemen nicht
in den Brennpunkt von Entwicklung gestellt werden. Gerade
können nicht-optimale, wenn durch ihren Gebrauch der Mensch
versagt. Der Zusammenhang zwischen kognitiven Prozessen bei
der Informationsverarbeitung und den ausgelösten Vorgängen bei
der Handlungsregulation ist in diesem Fall offenkundig.

4. Eine Problemlösung
Es ist naheliegend, die Qualität der Steuerungsprozesse über die
messbaren Eigenschaften von Daten, Signalen und Informationen
zum Ausdruck zu bringen, wenn man über geeignete Mittel zur Er-
klärung, Strukturierung und Bewertung verfügt (vgl. [9], [10], [11]).

86 HANS International Maritime Journal - 140. Jahrgang - 2012 - Nr. 1